An Algorithm for Computing the Radix - 2 n Fast Fourier Transform

نویسندگان

  • Junyuan ZHANG
  • Zhenhua LI
چکیده

In digital signal processing, the Fast Fourier Transform (FFT) is a kind of high efficient method to calculate the discrete Fourier transform (DFT). It cuts the discrete signal sequence which the length is N for different radix sequences to operate using the way of handing back and partition. Currently, the radix-2 FFT algorithm is a popular approach to do the transform work. However, its computation is still big. This paper seeks for a more efficient algorithm to better reduce computational complexity and it starts the study from the radix-2 and the radix-4 fast Fourier transform, then explores more efficient and faster radix-8 FFT algorithm and finally extends to radix any power of 2. Experiments evidence that the radix-8 FFT algorithm outperform the radix-2 in all in circumstances, therefore prove the feasibility and efficiency of the radix-2. Copyright © 2013 IFSA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Split Radix Algorithm for 2^R*3^M DFT

Discrete Fourier transform (DFT) is one of the most important tools used in almost all fields of science and engineering. DFT can be implemented with efficient algorithms generally classified as fast Fourier transforms (FFT). The most widely used approaches are so-called the algorithms for, such as radix-2, radix 4 and split radix FFT (SRFFT). Considerable researches have carried out and result...

متن کامل

A Fast Algorithm Based on SRFFT for Length N = q × 2 m DFTs

In this brief, we present a fast algorithm for computing length-q × 2 discrete Fourier transforms (DFT). The algorithm divides a DFT of size-N = q × 2 decimation in frequency into one length-N/2 DFT and two length-N/4 DFTs. The length-N/2 sub-DFT is recursively decomposed decimation in frequency, and the two size-N/4 sub-DFTs are transformed into two dimension and the terms with the same rotati...

متن کامل

Radix-2 Fast Hartley Transform Revisited

A Fast algorithm for the Discrete Hartley Transform (DHT) is presented, which resembles radix-2 fast Fourier Transform (FFT). Although fast DHTs are already known, this new approach bring some light about the deep relationship between fast DHT algorithms and a multiplication-free fast algorithm for the Hadamard Transform. Key-words Discrete transforms, Hartley transform, Hadamard Transform.

متن کامل

A Fast Algorithm With Less Operations for Length-N=q×2m DFTs

Discrete Fourier transform (DFT) is widely used in almost all fields of science and engineering. Fast Fourier transform (FFT) is an efficient tool for computing DFT. In this paper, we present a fast Fourier transform (FFT) algorithm for computing length-q × 2 DFTs. The algorithm transforms all q-points sub-DFTs into three parts. In the second part the operations of sub-transformation contain on...

متن کامل

A performance-efficient and datapath-regular implementation of modified split-radix fast Fourier transform

Discrete Fourier transform (DFT) finds various applications in signal processing, image processing, artificial intelligent, and fuzzy logic etc. DFT is often computed efficiently with Fast Fourier transform (FFT). The modified split radix FFT (MSRFFT) algorithm implements a length-N=2 DFT achieving a reduction of arithmetic complexity compared to split-radix FFT (SRFFT). In this paper, a simpli...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013